Faculty of Electrical Engineering University of Belgrade

Outlier Detection in Sensor Networks

(Sheng, Li, Mao)

Bogdan Azarić, 11/3035 bogdan.azaric@gmail.com

Outline

- Introduction
- Problem formulation
- Existing solutions
- Histogram query
- O(d, k) solution
- Performance evaluation

Introduction

- Wireless sensor network
- Outlier phenomenon
- Outlier detection

Wireless sensor networks

- Spatially distributed autonomous sensors
- Goal is to monitor physical or environmental conditions
 - Temperature
 - Sound
 - Presence of chemicals
- Consist of
 - 1. One or more sensors
 - 2. Communication radio
 - 3. Microcontroller
 - 4. Power supply

- Values that are numerically different then the rest
- In our case values are sensor network readings
- Typically low dimension

Outlier detection

- Very high application potential
 - Construction
 - Medicine
 - Seismology
- Purpose is to detect anomalies
 - Wind induced bridge vibrations
 - Patient health condition change
 - Earthquake detection
- Types
 - Local outlier detection
 - Global outlier detection

Stress detecting wireless sensor network

Global vs. Local outlier detection

- Local
 - Only a small subset of data is examined
 - Detecting abnormal sensor readings in local proximity
 - Easy to locate by aggregating data
 - Example: surveillence monitoring
- Global
 - Whole network readings are examined
 - Very costly due to network-wide transmissions
 - Subject of this presentation

Problem formulation

- Outlier definition is based on K-th nearest neighbor
- $D^k(p) = |p_k p|$
- Two most popular outlier definitions:
 - 1. O(d, k) outlier if: $D^k(p) > d$
 - 2. O(n, k) outlier if there are no more than n-1 data points q such that $D^{k}(q) > D^{k}(p)$
- Network consists of N nodes
- Routing tree rooted at the sink
- Data periodically generated
- Paremeters: *d* and *k* (def. 1), or *n* and *k* (def. 2)

Assumptions

- Routing tree topology robust
- Communication cost proportional to the packet size
- Each data point is represented by an integer

Routing tree example

Existing solutions

- Centralized scheme solution
 - All nodes sends all data poitns to the sink
 - Sink conducts the outlier detection
 - Drawbacks: huge communication cost
- J. Branch et. al. Solution
 - In-network scheme
 - Outcome is revealed to all sensors
 - Drawbacks: revealing outcome to all sensors costly
- S. Subramaniam et. al. solution
 - Keeps sliding window of the historic data
 - Drawbacks: huge memory consumption, may not reveal all

Histogram query

- Histogram: a rough estimate of the probability distribution
- We use equi-width histogram which is easy to aggregate
- Parameters:
 - Bucket width *w*
 - $max_i min_i = w$
 - $min_i = max_{i-1}$
 - f_i = number of points in bucket *i*

Equi-width histogram example

Histogram query

- Goal is to calculate value pairs (l_i, u_i) for every bucket *i* such that for every point *p* in bucket *i*, $D^k(p) \in (l_i, u_i]$
- Theorem 1: if f_i > k, then l_i = 0 and u_i = w 1, are lower and upper bounds for D^k(p), where p is any data point in bucket i.
- Theorem 2:
 - we define a function: $F(t,i) = \sum_{j=1}^{m} f_j$
 - If $fi \le k$, we can find an integer $s \ge 0$ such that $F(s, i) \le k$ and $F(s+1, i) \ge k$. Then $l_i = s \cdot w$, and $u_i = (s+2) \cdot w 1$
- We utilize these theorems in our outlier detection schemes

Outlier detection for O(d, k)

- Outlier detection scheme for the first outlier definition:
 - O(d, k) is outlier if: $D^k(p) > d$
- Composed of multiple stages
 - 1. Obtain v_{min} and v_{max} histogram information
 - 2. Collect histogram
 - 3. Collect outliers and potential outliers
 - 4. Diffuse potential outliers and count the number of neighbors within *d*

Obtain v_{min} and v_{max}

- The first step of the O(d, k) outlier detection scheme
- The sink queries every node for its v_{min} and v_{max}
- At the end the sink has the total value range
- Every node sends at most $\log(v_{\min} \cdot v_{\max})$ bits of information

Collect histogram

- 1. The sink sets the global histogram parameters: v_{min} , v_{max} , w
 - Good value for bucket width *w* is *d*.
- 2. The sink sends a histogram query to all nodes
 - The query includes: *w*, v_{min} , v_{max} , and *k*
 - All non-leaf nodes send $\log(k \cdot d \cdot v_{\min} \cdot v_{\max})$ bits
- 3. Sensors divide histogram according to v_{min} , v_{max} and d
- 4. Sensors put all data points into one of the buckets
- 5. Hisogram is sent back to the sink
 - Histogram is aggregated every time it is sent upstream
 - Optimisation: if in each bucket we get more then k + 1 points we fix the counter for that bucket to k + 1
 - Communication cost per node: $(1 / d) \cdot \log(k + 1)$

Collect outliers and potential outliers

- 1. The sink applies Theorem 1 and Theorem 2
- 2. The sink analyses results for each bucket *i*
 - Case1: ui < d, all data points are non-outliers, they can be ignored
 - Case 2: $li \ge d$, all data points are outliers
 - Case3: otherwise, all data points are potential outliers
- 3. The sink sends a bit-vector query to collect all outliers and potential outliers
 - Query = $\{q_1, q_2, q_3 \dots q_{[l/d]}\}$
 - Cost of points collection = $(N_o + N_{po}) \cdot \log(v_{max}) \cdot avgDist$

Diffuse potential outliers and count the number of Neighbors within d

- 1. Identifying some data points as outliers or non-outliers
- 2. For the rest, the sink sends queries comprised of list of potential outliers $\{p_1, p_2, p_3, ...\}$
- 3. Every sensor returns a list of summaries $\{f_1, f_2, f_3, ...\}$
 - The value of f_i is a number of points within distance d from p_i
 - Results are aggregated from children nodes to parent nodes
 - "k + 1" optimisation
- 4. The sink simply iterates over the result set and picks out every $f_i \le k + 1$

Total communciation cost

- Total communication cost:
 - Each row represents one stage of the algorithm

$$C_{basic} = N \cdot \log(v_{\min} \cdot v_{\max}) + N \cdot \left[\frac{l}{d}\right] \cdot \log(k \cdot d \cdot v_{\min} \cdot v_{\max}) + N \cdot \left[\frac{l}{d}\right] \cdot \log(k+1) + N_{nl} \cdot \left[\frac{l}{d}\right] + (N_o + N_{po}) \cdot \log(v_{\max}) \cdot avgDist + N_{nl} \cdot N_{po} \cdot \log(v_{\max}) + N \cdot N_{po} \cdot \log(k+1)$$

- Where N_1 is the number of non-leaf nodes
- Drawbacks: if N_{po} is very large, collecting and difusing outliers will incur heavy cost
- Soulution: enhanced scheme

Enhanced scheme

- More rounds of refined histogram queries can prune out additional data points
- Width of histogram bucket is now w = d' < d
- Each histogram query incurs additional communication cost
- Thus, the bucket width has to be carefully chosen

Performance evaluation

- Used real datasets from Intel Lab
- Data collected from 54 sensors during one month period
- 100 x 100 network, sensors randomly scattered
- Measurements for 1000 random topologies
- Two datasets of temperature measurements

Table 1: Network Setup	
Number of $Sensors(N)$	54
Number of Non-leaf Nodes (N_{nl})	25.7
Radio Range	18
Avg. Hop Distance(avgDist)	4.26

	03/01 Dataset	03/20 Dataset
Number of Data Points	91468	76871
Maximum Value	3424	5008
Minimum Value	1499	363
Value Range	1926	4646

Performance evaluation

- 03/20 data has lot more outliers
- Evaluation in terms of total communication cost
- Comparing to the centralized scheme

Conclusion: in worst case basic scheme consumes less than
5.5% of the cost of centralized scheme

References

- Outlier Detection in Sensor Networks (Bo Sheng, Qun Li, Weizhen Mao)
- Maimon O. and Rockach L. (Eds.) Data Mining and Knowledge Discovery Handbook
- Wikipedia http://www.wikipedia.org/
- Online Outlier Detection in Sensor Data Using Non-Parametric Models

Thank you for your attention

Bogdan Azarić, 11/3035 bogdan.azaric@gmail.com

